

Marina Chekulaeva (MDC-BIMSB)

Short Bio

Marina Chekulaeva is a group leader at the Berlin Institute for Medical Systems Biology (BIMSB). She earned her Ph.D. from the European Molecular Biology Laboratory (EMBL) in Heidelberg, where she studied RNA regulation in fly oogenesis. She then conducted her postdoctoral research at the Friedrich Miescher Institute in Switzerland, dissecting the mechanisms of miRNA function. Her current research focuses on post-transcriptional gene regulation, with a particular interest in RNA localization and translation in neurons and its connection to neurodegenerative conditions such as ALS and CMT. Key findings from her lab established that mRNA localization largely determines protein localization in neurons (Nature Comm 2017) and that alternative 3'UTRs drive protein isoform localization (NAR 2019). More recently, her lab developed a transcriptome-wide method to map RNA localization elements (Nature Neuro 2023) and showed that mRNA stability and modifications regulate the localization of housekeeping mRNAs (Mol Cell 2023). In neurodegeneration research, her lab has revealed a mechanism of translational repression in Charcot–Marie–Tooth disease (NAR 2021) and established a valuable biobank of ALS iPSC-derived models to drive future research (NAR MolMed 2025).

Sophia Maschalidi (VIB-UGent)

Short Bio

I am the leader of the Phagocytosis and Tissue Repair Lab at the VIB Center for Inflammation Research and an Assistant Professor in the the Department of Biomedical Molecular Biology at University of Ghent in Belgium. Following my studies in Molecular Biology and Genetics in Greece, I moved to Paris where I conducted my doctoral thesis at Curie Institute. My work aimed at unraveling key functions of phagocytes in sensing, processing and presenting antigens. After my PhD, I moved to Imagine Institute to join the group of Geneviève de Saint Basile and Alain Fischer, worldwide recognized scientists in the field of genetic diseases and the study of cytotoxic lymphocytes' functions. The main focus of my research was the development of new murine models for the study of a life-threatening immune disorder known as Hemophagocytic lymphohistiocytic (HLH) syndrome, the understanding of the cellular and molecular basis involved in the immunopathogenesis of this syndrome and the development and evaluation of new therapeutic approaches. Since September 2017 till 2023, I was a researcher in the group of Professor Kodi Ravichandran in Belgium. Joining this lab together with obtaining the prestigious postdoctoral Marie Curie fellowship, gave me the unique opportunity to expand my research in the field of phagocytosis. My current research focuses on the molecular and cell biology of phagocytosis and the importance of cell clearance for maintenance of tissue homeostasis and repair and control of tissue damage. I am mentoring two post-doctoral fellows, a PhD student, Master and Erasmus students. My work has led to highly cited papers (total 2614 Google Scholar), was published in high-impact journals and highlighted by patent applications and several speaking invitations and featured appearances-write-ups.